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Ancillaries: Growing Revenue Stream For Airlines 
and A Deeply Personal Choice For Travelers 
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Problem: Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do eiusmod 
tempor incididunt ut labore et dolore agna 
aliqua. Ut enim ad minim veniam, quis nostrud 
exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat.
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Solution: Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do eiusmod 
tempor incididunt ut labore et dolore magna 
aliqua. Ut enim ad minim veniam, quis nostrud 
exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat.
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1. We develop an approach that uses multi-armed bandit method to actively and adaptively route 
pricing requests to multiple models to further improve revenue.

2. We test this approach in a rigorously constructed simulation environment to demonstrate that 
a improved routing scheme that improves business metrics can be achieved.

3. We lay a foundation for future research to use contextual multi-armed bandit methods and 
perform online testing of this approach.

Moving Commercial Decisions from Average 
Customer Segment to Individual Traveler

A Deployment Framework Designed for Continuous 
Experimentation[2]

Our Model Selection Problem and Set-up

1. GNB: Gaussian Naive Bayes model for ancillary purchase probability prediction and a pre- calibrated logistic 
price mapping function for revenue optimization. 

2. GNBC: Gaussian Naive Bayes with clustered features model for ancillary purchase probability prediction 
and a pre-calibrated logistic price mapping function for revenue optimization.

3. DNN: Deep-Neural Network (DNN) trained using a weighted cross-entropy loss function for ancillary 
purchase probability estimation. For price optimization, we implement a simple discrete exhaustive search 
algorithm that finds the optimal price point within the permissible pricing range.

Our Pricing Models

Simulation Environment
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Results and Discussion

Future Work 

Key Takeaways

Contextual Multi-Armed Bandit: Right now we are tracking the performance of each model at the 
highest possible level. It is possible that certain models perform better in certain customer contexts. 
Contextual multi-armed bandit forumation will help us address this issue.
Non-Stationary Formulation: Changing competitive environment and market dynamics could change 
customer behavior and the performance of various models in these conditions. We plan to explore a 
non-stationary formulation of the multi-armed bandit, which ignores historical observations made prior 
to a certain time [3].
Different Objective Function: Currently improvement to the revenue per offer is entirely implicit but not 
guaranteed. In the future, we plan to adjust the formulation of the multi-armed bandit method to 
maximize for revenue per offer directly. 

References

1. IdeaWorks. Airline ancillary revenue projected to be $92.9 billion worldwide in 2018. 
https://www.ideaworkscompany.com/wp-content/uploads/2018/11/Press-Release-133-G
lobal-Estimate-2018.pdf, 2018. IdeaWorks Article

2. Shukla, N., Kolbeinsson, A., Otwell, K., Marla, L. and Yellepeddi, K., 2019. Dynamic Pricing 
for Airline Ancillaries with Customer Context. arXiv preprint arXiv:1902.02236.

3. Cortes, C., DeSalvo, G., Kuznetsov, V., Mohri, M., and Yand, S. Multi-armed bandits with 
non-stationary rewards. CoRR, abs/1710.10657, 2017.

1. Each arm is a different pricing model.

2. The priors are assumed to be beta 
distributed as shown in the equation 
and true distributions are assumed to 
be stationary.

3. During training we update the model 
selection probabilities as described 
in Algorithm 1 until convergence.
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