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1 Summary of Article

The research, Nonlinear Component Analysis as a Kernel Figenvalue Problem,
conducted by Bernhard et al., proposes a new method, kernel PCA, for perform-
ing nonlinear principal component analysis, where the principal components of
features are nonlinearly related to the input variables. This method can obtain
principal components by computing dot products in feature space using kernel
functions in input space, instead of computing such dot products explicitly.

The paper first derives the method by generalizing the standard PCA to the
nonlinear case, where the input space is mapped to a feature space with some
mapping function. Since the map might have a huge or infinite dimensionality, a
kernel representation is introduced, in order to compute dot products in feature
space efficiently without having to carry out the map. It is proved by Mercer's
theorem that kernels can achieve such goal if they are integral operators. Typ-
ical examples of this are polynomial kernels, radial basis functions and sigmoid
kernels.

Based on the algorithm, the paper then illustrates the properties of kernel PCA.
In general, kernel PCA in feature space shares the same properties as standard
PCA in input space. Additionally, kernel PCA is unitary invariant. As for the



computational complexity, kernel PCA is computationally comparable to linear
PCA, because it can deal with huge dimensionality efficiently by just comput-
ing in a small subspace of feature space and avoiding computing dot products
explicitly. When extracting principal components, even though kernel PCA is
not that fast, it is still much faster than performing linear PCA in feature space
directly. It is possible to speed things up by using less samples to approximate
eigenvectors while minimizing the squared errors. This method can also be
utilized to solve the problems that might occur during variable selection and re-
construction. Besides, nonlinear features can be applied to train linear support
vector machines, which will also save running time.

The paper conducts two set of experiments to examine the properties and effi-
ciency of kernel PCA. The first experiment tests three kernel functions on an
artificial dataset, showing that kernel PCA can better reflect the structure in the
data. The second one performs kernel PCA with polynomial kernel functions in
different degrees on the US Postal Service (USPS) dataset to extract nonlinear
principal components, which are then used to train linear support vector ma-
chines. The experimental results illustrate that such principal components can
yield much lower test error rates and produce a better classifier. By using more
components than is possible in the input space, kernel PCA can further achieve
a better performance.

Based on the experiments, it can be proved that kernel PCA not only per-
forms better than linear PCA, but also outperforms other feature extraction
methods. Compared to other methods for nonlinear PCA, kernel PCA exhibits
two main advantages. One is that it only needs to solve simple linear algebra
problems instead of complicated nonlinear optimization problems. The other
lies in the fact that it doesn't need to specify the number of desired compo-
nents in advance. There might exist some possible drawbacks for kernel PCA if
the number of observations is very large and the interpretability is not desirable.

As a conclusion, the kernel method can be applied to construct the nonlin-
ear variants of some classical algorithms. Due to its simplicity and accuracy,
kernel PCA has a broad range of applicable domains, such as noise reduction,
density estimation, image indexing, etc.

2 Overview of Kernel PCA

2.1 Mathematical Modeling

We are not interested in principal components in input space but in the features
(principal components of variables) that are non-linearly related to the input
variables. Some of the variables included in them are those that are obtained
by taking arbitrary higher-order correlations between input variables. The non-
linearity in the dataset cannot be dealt through linear PCA. In this case we



might want to map the data to a higher dimensional feature space by: RN 5 F.
The PCA is then performed in the new space.

»:RY 5 Fx— X (1)

It can be noted that F' (feature space), might have an arbitrarily large, possibly
infinite dimensionality. Here and in the following, uppercase characters are used
for elements of F, and lowercase characters denote elements of R™.

In order to keep things simple, the assumption has been made that observations
are centered. This is easy to achieve in input space but harder in F', because
we cannot explicitly compute the mean of the ®(x;) in F. Thus, we have

> o) =0. (2)

The covariance matrix in F' space can be found by using the traditional PCA
approach,

0= LS aec)” (3
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AV =0V (4)

As the dimensions of F' is very high, the eigenvalue decomposition is compu-
tationally extremely expensive. So we modify Eq.4: The eigenvalue problem
AV = CV can also be expressed in terms of a dot product as follows:

AP (xx) - V) = (®(xx) - CV) (5)

foralk=1,..., M.
Also, we can represent the eigenvectors V in terms of linear combination of
feature vectors:

M
V= ZO[,'(I)(Xi) (6)

Now because we are only interested in the dot product of the transformed feature
vectors, we can use kernel functions to our advantage as follows.

M LM M
/\Zai(‘l’(xk) 0(xi) = 7 Z%‘(‘I’(Xk) : Z‘I’(Xj))(q’(xj) O(xi))  (7)

forallk=1,..., M.
Dot product in new space is represented as a kernel:

Rz, y) = ((x) - 2(y)) (8)



Then the eigenvalue problem can be further simplified as:
Ml =Ka (9)
Where the kernel matrix K is defined as:
Kij = (®(xi) - ®(x;)) (10)

The eigenvectors and eigenvalues may be found by solving this equation. We
see that, in kernel PCA, a non-trivial arbitrary function ®(-) is chosen, but is
usually never calculated explicitly, allowing the possibility for using a very high
dimensional ®(-). Hence, the computation of the eigenvectors and eigenvalues of
the covariance matrix in the high dimensional feature space is avoided. Instead,
the kernel matrix is found and its eigenvectors and eigenvalues are computed,
which in some cases can be much easier.

The projection of feature vectors onto principal components can be calculated
in the following way:

M
(V" ®(x)) = Y afr(xi, ) (11)
i=1
Where oy is the eigenvector of K, and A1, Ag, ..., Aps, are the eigenvalues of K.

2.2 The Algorithm for Kernel PCA
To perform kernel-based PCA, the following steps have to be carried out:

Algorithm 1 Kernel PCA Algorithm

1: procedure K - PCA(X)

2: Given Input: Xy < [X1,X2, ..., Xp1]

3 Centralize : Xcentered ¢ XNxM

4: Kernel Matrix : Kprxar : kij < k(xi,%5)
5: Centralization in F space :
6
7
8

K:K<+ K—IyK/M—KIy /M + InyKIy/M?
Extracting eigenvectors : MAa = Ko
Normalization :

o«
Q= mod(a)V M\

9: loop: i+ 1:p
M

10: R(.’L‘) = Z OéijIQ(Xi, X)
i=1

11: goto top.

2.3 Discussion: Choosing a Kernel function

Gaussian kernel PCA with a properly selected parameter ¢ can perfectly sepa-
rate the two classes in an unsupervised manner, which is impossible for standard



PCA. With a well selected o, Gaussian kernel PCA will have a proper capture
range, which will enhance the connection between data points that are closer to
each other in the original feature space. Then by applying eigenvector analy-
sis, the eigenvectors will describe the directions in a high-dimensional space in
which different clusters of data are scattered to the greatest extent.

2.3.1 Discussion: Choosing the number of principal eigenvalues

Traditionally, one of the most well-known criteria for this decision is the scree
criterion (Fabrigar et al., 1999), which involves a scree plot with the compo-
nents identified on the x-axis and their associated eigenvalues on the y-axis. If
such a plot shows a break, or an elbow, identifying the last component that
accounts for a considerable amount of variance in the data. The location of this
elbow (the x coordinate) indicates the appropriate number of components to be
included in the solution.

Typically, choose k (number of principal components) to be the smallest value so
that the proportion of the sum of the significant diagonal elements (Obtained
after diagonalization) to the sum of all elements is obtained and if this ratio
typically lies in the range of 0.95-0.99, the corresponding values are considered
as the principal components that need to be taken into consideration.

2.4 Kernel PCA : Pseudocode
a. Loading Test data

b. Centering Test data

c. Defining Kernel function

d. Creating Kernel K matrix

e. Centering of Kernel K matrix in F space

f. Eigenvalue Decomposition of K centered Matrix

g. Sorting Eigenvalues in descending order thus, sorting the corresponding
eigenvectors as well using bubble sort.

h. Selecting the smallest number of these sorted eigenvalues which account
for maximum variation(99%) in the data, thus, selecting the significant
eigenvectors corresponding to these eigenvalues.

i. Normalizing all significant sorted eigenvectors of K

j. Projecting data in the principal component coordinate system



3 Discussion of the application areas

The purpose of nonlinear PCA is to identify and to extract nonlinear compo-
nents from a given data set. The extracted components span a component space
which is supposed to cover the most important information of the data.

Linear PCA is being used in numerous technical and scientific applications,
including noise reduction, density estimation, image indexing and retrieval sys-
tems, and the analysis of natural image statistics. Kernel PCA can be applied
to all domains where traditional PCA has so far been used for feature extraction
and where a nonlinear extension would make sense. The method of nonlinear
kernel PCA analysis can be used to classify big and high dimensional data with
lots of features. One of the fundamental areas where this can be used would
be in document classification which has a lot of features in terms of thousands
of words and contextual information. Other forms of implementation would
involve domains like MEG brain imaging and conducting and classifying infor-
mation obtained from surveys on platforms like Netflix.

A primary avenue of utilization of non linear PCA is in image analysis where
it is extensively used for image compression, recognition of faces (Eigenfaces),
image segmentation with respect to intensity (black-white) and texture. A
wide array of challenging segmentation problems in dynamic vision like that of
rigid-body motions, video and dynamic textures can also be solved.

NLPCA (Nonlinear Principal Component Analysis) is the nonlinear dimension-
ality reduction method that has been used most in climate applications. Along
with its extensions to correlation and spectral analysis, NLPCA has been applied
to questions as diverse as tropical Pacific climate variability, regimes in Northern
Hemisphere atmospheric dynamics, and the quasi-biennial oscillation. The first
climate application where NLPCA was used was the question of tropical variabil-
ity in the Pacific. Application of NLPCA with one and two-dimensional bottle-
neck layers to tropical Pacific observational SST data demonstrated that low-
dimensional NLPCA approximations can characterize variability in this data
better than linear PCA approximations, and that NLPCA approximations are
able to represent the observed El Nio/La Nia asymmetry [Monahan, 2000, 2001].

An extension of NLPCA that has proven useful in some applications uses complex-
valued networks [Rattan and Hsieh, 2005]. These can be used for the analysis
of vector field data such as winds or currents, where it is possible to exploit
spatial correlations between different vector components. This approach has
been applied in the study of tropical Pacific winds [Rattan and Hsieh, 2004]



4 Implementations of example application

4.1 Iris Dataset Visualization

Principal Component Analysis (PCA) is a dimensionality reduction technique
that is used to transform and a high-dimensional dataset into a smaller dimen-
sional subspace to give a directed impression of the dataset prior to running a
machine learning algorithm on the data. The Iris dataset is in a 4;;, dimensions
(features) of three different iris ower species. Linear PCA can only extract two
visible clusters, however, with Kernel PCA we can visualize better in a two
dimensional subspace.
4.1.1 Pseudocode for Iris Dataset Visualization

a. Loading Iris Dataset

b. Loading built-in functions in Python libraries

c. Training PCA/KPCA model on the dataset

d. Reconstruct data

e. Projecting data in the principal component coordinate system

4.2 USPS Handwriting Dataset Recognition

The dataset contains numeric data obtained from the scanning of handwritten
digits from envelopes by the U.S. Postal Service. The original scanned digits
are binary and of different sizes and orientations; the images here have been
deslanted and size normalized, resulting in 16 x 16 grayscale. We will first
extract features via Kernel PCA and apply that to a SVM classifier to train
and test on the splitted USPS dataset.

4.2.1 Pseudocode for USPS Handwriting Dataset Recognition
a. Loading USPS Dataset

b. Determining the Kernel function used
c. Creating matrix K and centering K in F feature space
d. Sorting the eigenvalues and eigenvectors

e. Selecting the smallest number of eigenvectors which can contains 99% of
variance

f. Projecting data in the principal component coordinate system
g. Training SVM classifier with extracted features (80% of original data)

h. Testing classifier results on the test data (20% of the original)
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