
Flappy Bird Hack using Deep Reinforcement Learning with Double Q-learning

Jianqiu Kong
University of Illinois
Urbana Champaign

jkong11@illinois.edu

Naman Shukla
University of Illinois
Urbana Champaign

namans2@illinois.edu

Shubham Bansal
University of Illinois
Urbana Champaign

shubham8@illinois.edu

Ziyu Zhou
University of Illinois
Urbana Champaign
ziyuz2@illinois.edu

Zhenye Na
University of Illinois
Urbana Champaign
zna2@illinois.edu

Abstract

This implementation introduces training a software
agent via deep reinforcement learning with double deep Q-
learning technique. The environment with which the agent
is interacting is a game simulation - Flappy Bird. Dou-
ble Deep Q-learning is used to tackle overestimation of val-
ues in Deep Q-learning which arises due to coupling of ac-
tion selection and evaluation. We present extensive study of
sensitivity analysis of hyper-parameters as well as specific
model based choices based on consistent environment met-
ric i.e. Flappy Bird game. We also present the analysis on
the results obtained by running different experiments for the
different model parameters. 1

1. Introduction

Mnih et al [4] has demonstrated that human-level con-
trol can be achieved using Deep Reinforcement Learning
via single learning model based on Q-learning. Although,
DQN out performs most of the environment specific state of
the art algorithms, it still suffers from overestimation issue
[2]. Hado van Hasselt et al [7] presented the idea of Dou-
ble Deep Q-learning to resolve this issue. Here, the aim is
to experiment with different network parameters and hyper-
parameters to test the idea of Double Deep Q-learning on
an environment. 2

1codes for this project could be found here: https://github.
com/drl-dql/DQN-Flappy-Bird

2experiment results database: https://drive.google.com/
drive/folders/1qrXkRJQ3kpdVhvrTNKhWqlAPm3V-52_r?
usp=sharing

1.1. Paper Overview

The idea of using double deep networks for Q-learning
to solve the overestimation problem of the Q-learning algo-
rithm was proposed by Hado van Hasselt et al in their paper
Deep Reinforcement Learning with Double Q-learning [7].

1.1.1 DQN with Target Network

In the DQN, based on the Bellman optimality, the target is
defined as,

Y DQN
t = Rt+1 + γ(max

a
(Q(St+1, a; θt)))

where θt is the parameters of the network at time t. To
update the parameters, we take a Stochastic Gradient De-
scent (SGD) step,

θt+1 = θt + α(Y DQN
t −Q(St, At; θ))∇θQ(St, At; θ)

This assumes that the Q target Y DQN
t and the Q value

Q(St, At; θ) use the same parameters and are updated to-
gether. It will introduce high correlations between Q target
and Q value which makes the training very unstable, mean-
ing that at every step of training, the Q values shift but also
the target value shifts.

To break this kind of correlation, Mnih et al. [4] pro-
pose to use a separate target network whose parameters are
copied every τ steps from the original Q value network and
are kept fixed on all other steps. The target network is now,

Y DQN
t = Rt+1 + γ(max

a
(Q(St+1, a; θ

−
t )))

where θ−t represents the parameters of the target net-
work. At every τ steps, the parameters are updated as,
θ−t = θt.
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1.1.2 Problems of DQN

Recall that the target Y DQN
t is defined as

Y DQN
t = Rt+1 + γ(max

a
(Q(St+1, a; θ

−
t )))

The max operator in the target network, uses the same
parameters to select and evaluate the actions. The problem
is that the best action for the next state is not necessarily the
action with the highest Q value. As illustrated in Thomas
Simonini’s blog [5]:

At the beginning of the training we don’t have enough
information about the best action to take. Therefore,
taking the maximum Q value (which is noisy) as the
best action to take can lead to false positives. If non-
optimal actions are regularly given a higher Q value
than the optimal best action, the learning will be com-
plicated.

1.1.3 Double DQN

Double DQN addresses the above problem by decoupling
action selection and action evaluation. We first use our Q
value network, i.e., the original on-line network, to select
what is the best action to take for the next state (the action
with the highest Q value). Then the target network will be
used to calculate the target Q value of taking that action at
the next state. Now, Yt becomes,

Y DoubleDQN
t = Rt+1+γQ(St+1, argmax

a
Q(St+1, a; θt); θ

−
t )

2. Details of Approach
2.1. PyGame Learning Environment

We used PyGame Learning Environment (Figure 1) de-
veloped by Tasfi Norman [6] for experimenting. PyGame
Learning Environment (PLE) is a learning environment,
mimicking the Arcade Learning Environment interface, al-
lowing a quick start to Reinforcement Learning in Python.
The goal of PLE is allow practitioners to focus design of
models and experiments instead of environment design.

Figure 1: PyGame Learning Environment

2.2. Model Architectures

The Convolution Network used in the experiments is ex-
actly the one proposed by Mnih et al. (2015). Briefly,
the network architecture is a Convolution Neural Network
(Fukushima, 1988 [1]; LeCun et al., 1998 [3]) with 3 con-
volution layers and a fully-connected hidden layer (approx-
imately 1.5M parameters in total).

The input to the network is a 84× 84× 4 tensor contain-
ing a rescaled and gray-scale version of the last four frames.
The first convolution layer convolves the input with 32 fil-
ters of size 8 (stride 4), the second layer has 64 layers of size
4 (stride 2), the final convolution layer has 64 filters of size
3 (stride 1). This is followed by a Fully-Connected hidden
layer of 512 units. All these layers are separated by Rectifier
Linear Units (ReLU). Finally, a fully-connected linear layer
projects to the output of the network, i.e., theQ-values. The
Optimization methods employed to train the network are
RMSProp (with momentum parameter 0.95), Adam as well
as Stochastic Gradient Descent (with momentum parameter
0.95).

Figure 2: Model architecture

2.3. Hyper-parameter Choices

In the implementation, different combinations of hyper-
parameters like learning rate, discount factor, update target
frequency, and batch size as well as optimizer have been
used as experimental setups. Please refer to the table 1 for
more details.

Here are some default parameters:

Hyperparameter Value
replay buffer size 50000

total episodes 100000
initial epsilon 0.1

minimum epsilon 0.0001
epsilon discount rate 1× 10−7

screen size 84× 84× 4
number of saved model 5
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2.4. Training Methods

In this implementation, we update policy network after
specific number of episodes (determined by Update Target
Frequency parameter) and not after certain number of time
steps (N−) within a single episode. Here are several func-
tions in Agent class Agent.py explained in detail.

2.4.1 Build Network

Initializes Q and QTarget network based on model architec-
ture declared in Model.py and action number (number of
valid actions in a specific game). Also, initializes optimizer
as specified. Please note that Q and QTarget network have
identical network architecture.

2.4.2 Update Target Network

Updates QTarget with parameters of Q network.

2.4.3 Update Q Network

PutQ andQTarget network in evaluation mode. Now, we use
current Q network to evaluate action a′ based on the new
state s′:

argmax
a′

QCurrent(s
′, a′)

Now, use QTarget network to evaluate value using R (current
reward) and future rewards based on s′ and a′:

Y = R+ γ ×QTarget(s′, a′)

Using Qcurrent, state and action we determine Qvalue.
Using thisQvalue and Y (from above), we calculate mean

squared loss (MSE). This loss is used for backward propa-
gation and eventually in taking an optimizer step.

2.4.4 Take Action

Puts Qcurrent in evaluation mode. Returns an action based
on ε− greedy algorithm, which is with ε probability choose
random action else choose argmaxQ estimate action.

2.4.5 Update Epsilon

If εvalue > εmin value, reduce εvalue by Discount Rate(ε).

3. Results and Analysis

We performed multiple different experiments on differ-
ent hyperparameters with all other parameters fixed to see
the influence of the single hyperparameter. All the experi-
ments are done with a time limit of 48 hours of training.

3.1. Batch Size Analysis

Figure 3: Batch Size Rewards

Batch size refers to the number of training examples uti-
lized in one iteration. We may assume that larger batch size
lead to larger average reward and higher stability.

We have experimented on three batch sizes, 16, 32 and
64. As we can see in Figure 3, the reward is increasing
almost linearly with the batch size after the first 20000
episodes. As a larger batch size allows more gradient
updates per episode, the policy network is able to learns
faster than a smaller batch size within the same number of
episodes.

Figure 4: Batch Size Loss

The stability information may also be revealed in Fig-
ure 4, the loss plot of different batch sizes. The error in-
curred tend to be more stable and smaller with the increase
in batch size. As the training time is fixed, it’s reasonable
that a larger batch size will need more time to train one
episode and given same number of episodes, experiments
with larger batch size result in higher average rewards.

3.2. Discount Factor Analysis

The discount factor (γ) determines the importance of fu-
ture rewards. A factor of 0 makes the agent ”opportunis-
tic” by only considering current rewards, while a factor ap-
proaching 1 will make it strive for a long-term high reward.
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Algorithm 1 Double DQN Algorithm.

1: Input
2: D empty replay buffer
3: θ initial network parameters
4: θ− copy of θ
5: Nr replay buffer maximum size
6: Nb training batch size
7: N− target network replacement frequency
8: for episode e ∈ {1, 2, . . . ,M} do
9: Initialize frame sequence x← ()

10: for t ∈ {0, 1, . . . } do
11: Set state s← x, sample action a ∼ πB
12: Sample next frame xt from environment ε given (s, a) and receive reward r, and append xt to x
13: If |x| > Nf , delete oldest frame xtmin from x
14: Set s′ ← x, and add transition tuple (s, a, r, s′) to D,
15: replacing the oldest tuple if |D| > Nr
16: Sample a minibatch of Nb tuples (s, a, r, s′) ∼ Unif(D)
17: Construct target values, one for each of the Nb tuples:
18: Define amax(s′; θ) = argmax

a′
Q(s′, a′; θ)

19: yj =

{
r if n if s′ is terminal
r + γQ(s′, amax(s′; θ); θ−) otherwise

20: Do a gradient step with loss ‖ yj −Q(s, a; θ)
21: Replace target parameters θ− ← θ every N− steps
22: end for
23: end for

If the discount factor meets or exceeds 1, the Q values may
diverge. It somehow measures how far ahead in time the
algorithm looks.

We have compared the influence discount factor makes
to the average rewards and loss of multiple training results.
In order to do this, we fixed all the other parameters, only
changed the value of discount factor γ ranging from 0.9 to
0.99 to test.

Figure 5: Discount Factor - Average Rewards

As we can see in Figure 5, this is the how discount fac-
tor influenced average reward. This is exactly what we ex-
pected to see. In this figure, from top to bottom, the dis-

count factor are 0.99, 0.97, 0.95, 0.93 and 0.90 in order.
Since we consider for a long-term observation of policies,
the average reward of larger discount factor performs better
than experiments with smaller discount factor.

As for the loss during training in figure 6, even though
the losses of training deep reinforcement learning does not
tell much, we can still observe that there is a trend that ex-
periments with larger discount factor has a higher or more
fluctuating loss, while smaller discount factor has a more
stable loss during training.

Figure 6: Discount Factor - Loss
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3.3. Learning Rate Analysis

Learning rate is the hyper-parameter that controls how
much we are adjusting the weights of the network with re-
spect to the loss gradient. It is important to figure out the
appropriate learning rate for a certain network architecture.

From figure 7, one interesting point to notice is that the
policy network barely learns anything with either too large
or too small learning rates. A learning rate of 0.01 is too
fast to update the weights of the network and 0.00001 is too
slow to update the network weights. For those values with
a reasonable average reward, the reward plot shows a sim-
ilar relationship as to the batch size reward plot. Learning
rates of 0.0001, 0.00015 and 0.00025 are of the same mag-
nitude and an approximate linear relationship of the average
reward increase vs. learning rates can be observed. With a
larger learning rate, the network updates the weights with
a faster speed and thus incur faster reward increase than
smaller learning rate within a reasonable range.

Figure 7: Learning rate - Average Rewards

Figure 8: Learning rate - Loss

3.4. Optimizer Analysis

It takes a long time to train a reinforcement agent and the
training stability itself could be a point of consideration, the
choice of optimizer plays a key role in learning. We have
considered two different optimizers for loss minimization -
RMS prop and Adam.

Figure 9: Optimizer selection - Average Rewards

Figure 9 demonstrates that the trajectory of average re-
ward is quite different in both cases. The rate of change of
the marginal gain in average reward is negative. This per-
haps makes the agent to receive asymptotic average reward
as the number of episodes increases. On the other hand,
Adam pretends to be far slower in learning but the rate of
change of marginal gain in average reward is positive. This
implies the agent might not get saturated rewards after a
certain stage of training.

Figure 10: Optimizer selection - Loss

The loss values present in figure 10 are showing similar
trend as figure 9. The initial loss values for RMS prop is
dominant over Adam. Eventually, Adam loss values sur-
passes RMSprop’s loss values. This is consistent with the
previous observation of higher loss corresponding to higher
rewards.

3.5. Update Target Frequency Analysis

Updating the target network after a certain number of
iteration is referred as update target frequency. This hyper-
parameter is specific to DDQN architectures. Here, we have
attempted 3, 7, 9, 10, 12, 13 and 15 frequency values and
observed the performance of the agent.
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Figure 11: Update Target Frequency - Average Rewards

The overall trend observed in figure 11 is such that the
curves corresponding to different values of hyper-parameter
differ very slightly. Nevertheless, according to figure 12 the
agent receives higher average reward for lower update fre-
quency value at a certain stage of training. Also, the initial
rewards are indistinguishable for different frequency values.
This demonstrate that the untrained/semi-trained networks
would not have coupling issues as the reward signal is low
due to random weights and biases of the target and action
selection network.

Figure 12: Update Target Frequency - Loss

The loss values observed from figure 12 follows the
similar trend as the average reward values. Although the
loss values are noisy, there exists a high overlap between
the loss values corresponding to the different set of hyper-
parameters.

4. Computational Hours

We have fully utilized Blue Waters as well as Google
Colab for training.

Platform Computation hours used
Blue Waters ∼ 1300

Google Colab
∼ 30 (for training and

environment pre-configuration)

5. Comparison with Paper’s Results
The results provided by Hado van Hasselt et al on vari-

ous Atari games are in comparison with the DQN through
normalized scores. Although the objective of our imple-
mentation is different from the original paper baseline com-
parison, we observed similar trend in loss function (a bit
noisy than expected) and average reward as Wizard of Wor
and Asterix as mentioned in the original paper.

Figure 13: Best Performing Agent

In the original paper, the robustness is judged by execut-
ing training at various starting point and observing the gen-
eralization of DDQN. In our environment i.e. Flappy Bird,
we don’t have to explicitly attempt different starting points
for the game since this randomness is the part of the game
itself. However, the observation is consistent with original
paper’s conclusion about the robustness of the model i.e.
the agents performance is independent of the stating point.

6. Conclusion
We proposed and implemented Double DQN algorithm

(with slight modifications) using PyTorch, which uses a
convolution neural network architecture proposed by Mnih
et al. (2015). We developed and ran 50 different experi-
ments based on different sets of hyper-parameters. The re-
sults of these experiments helped us analyze affect of dif-
ferent hyper-parameters on quality of policy learned by the
agent. This was achieved by running sets of experiments
where only one hyper-parameters varied and rest remained
constant. Our study yielded interesting insights about im-
pact of batch size, optimizer, learning rate, discount factor,
update target frequency on cumulative average rewards as
explained in Section 3.

7. Statement of individual contribution
Jianqiu Kong

Jianqiu along with Zhenye build CNN used for Q-value.
She also did unit testing and final visualization for the ap-
plication.
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Naman Shukla

Naman was responsible for configuring the environment
in Google Colaboratory as well as in Blue Waters. Along
with Shubham and Zhenye, he built the final application.

Shubham Bansal

Shubham was in charge of running majority of the ex-
periments. He developed DDQN agent network with Ziyu
Zhou and helped Naman in integrating the modules into a
single application.

Ziyu Zhou

Ziyu took responsibility of building DDQN agent net-
work along with Shubham. Also, she wrote majority of
utility functions for the application.

Zhenye Na

Zhenye built the CNN along with Jianqui. He also archi-
tected the entire pipeline for the final application integration
using different modules.
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Table 1: Experimental Setups

Account used Configuration # Optimizer LR Disc. Factor
Update target

frequency Batch size
Initial observe

episode
Naman’s Account 0 Adam 1.00E-04 0.99 7 32 80
Naman’s Account 1 Adam 1.00E-04 0.99 3 32 120
Naman’s Account 2 Adam 1.00E-04 0.99 10 32 100
Naman’s Account 3 Adam 1.00E-04 0.99 10 16 100
Naman’s Account 4 Adam 1.00E-04 0.99 12 32 100
Naman’s Account 5 Adam 1.00E-04 0.99 12 16 200
Naman’s Account 6 Adam 1.00E-04 0.99 15 32 100
Naman’s Account 7 Adam 1.00E-04 0.99 10 16 150
Naman’s Account 8 Adam 1.00E-04 0.99 7 16 180
Naman’s Account 9 Adam 1.00E-04 0.99 12 16 180
Naman’s Account 10 Adam 1.00E-04 0.99 9 32 120
Naman’s Account 11 Adam 1.00E-04 0.99 9 16 100
Naman’s Account 12 Adam 1.00E-04 0.99 15 16 120
Naman’s Account 13 Adam 1.00E-04 0.99 3 16 120
Naman’s Account 14 Adam 1.00E-04 0.99 15 64 100
Naman’s Account 15 Adam 1.00E-04 0.99 7 64 120
Naman’s Account 16 Adam 1.00E-04 0.99 3 64 120
Naman’s Account 17 Adam 1.00E-04 0.99 9 64 150
Naman’s Account 18 Adam 1.00E-04 0.99 13 64 150
Naman’s Account 19 Adam 1.00E-04 0.99 13 32 120
Naman’s Account 20 Adam 1.00E-03 0.95 13 32 120
Naman’s Account 21 Adam 1.00E-03 0.9 13 32 120
Naman’s Account 22 Adam 1.00E-03 0.99 13 32 120
Naman’s Account 23 Adam 1.00E-03 0.97 13 32 120
Naman’s Account 24 Adam 1.00E-03 0.93 13 32 120
Naman’s Account 25 Adam 1.00E-04 0.95 13 32 120
Naman’s Account 26 Adam 1.00E-04 0.9 13 32 120
Naman’s Account 27 Adam 1.00E-04 0.97 13 32 120
Naman’s Account 28 Adam 1.00E-04 0.93 13 32 120
Naman’s Account 29 Adam 1.00E-03 0.9 10 32 120
Shubh’s Account 30 Adam 1.00E-02 0.99 13 32 120
Shubh’s Account 31 Adam 2.50E-04 0.99 13 32 120
Shubh’s Account 32 Adam 1.00E-05 0.99 13 32 120
Shubh’s Account 33 Adam 1.50E-04 0.99 13 32 120
Shubh’s Account 34 Adam 1.50E-03 0.99 13 32 120
Zhenye’s Account 35 RMSProp 0.00025 0.99 4 32 100
Kong’s Account 36 RMSprop 1.00E-04 0.99 7 32 80
Kong’s Account 37 RMSprop 1.00E-04 0.99 3 32 120
Kong’s Account 38 RMSprop 1.00E-04 0.99 10 32 100
Kong’s Account 39 RMSprop 1.00E-04 0.99 10 16 100
Kong’s Account 40 RMSprop 1.00E-04 0.99 12 32 100
Kong’s Account 41 RMSprop 1.00E-04 0.99 12 16 200

Zhenye’s Account 42 RMSprop 1.00E-05 0.99 10 32 100
Zhenye’s Account 43 RMSprop 1.00E-04 0.99 10 32 100
Zhenye’s Account 44 RMSprop 0.0002 0.99 4 32 100
Kong’s Account 45 SGD 1.00E-03 0.99 7 16 180
Kong’s Account 46 SGD 1.00E-03 0.99 9 16 100
Kong’s Account 47 SGD 1.00E-03 0.99 9 32 120
Kong’s Account 48 SGD 1.00E-03 0.99 10 16 150
Kong’s Account 49 SGD 1.00E-03 0.99 12 16 180
Kong’s Account 50 SGD 1.00E-03 0.99 15 32 100
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