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Abstract

The architecture introduced in this paper learns a map-
ping function G : X 7→ Y using an adversarial loss such
thatG(X) cannot be distinguished from Y , whereX and Y
are images belonging to two separate domains. The algo-
rithm also learns an inverse mapping function F : Y 7→ X
using a cycle consistency loss such that F (G(X)) is in-
distinguishable from X. Thus, the architecture contains two
Generators and two Discriminators. However, the major
aspect in which this implementation truly shines is that it
does not require the X and Y pairs to exist, i.e. image
pairs are not needed to train this model. This is highly ben-
eficial as such pairs are not necessarily always available
or tend to be expensive monetarily. An application of this
could be used in movies, where, if a movie crew was unable
to shoot a scene at a particular location during the sum-
mer season and it is now winter, the movie crew can now
shoot the scene and use this algorithm to generate scenes
which look like they were shot during the summer. Other
areas in which this algorithm can be applied include image
enhancement, image generation from sketches or paintings,
object transfiguration, etc. The algorithm proves to be su-
perior to several prior methods.

1. Introduction

An image style transfer is a method to translate an image
from one style or design to another keeping all the image
characteristics intact. For example, transforming an image
of a painting from Van Gogh [16] collection of paintings to
an image of a Monet painting such that it is indistinguish-
able to the set of Monet painting collections. Changing tex-
tures of the objects within the painting also falls under the
same style translation. In this report, we present one such
method that can learn to do image to image style transfer
: capturing special characteristics of a set of images and
translating them to a different set of image collections, all

in the absence of any pairing between the two image sets
and with no human intervention.

Many years of research in pattern recognition, image
processing and computer vision have produced algorithms
that can translate images from one set to another [3] [7]
[12]. Most of the processes require supervision. Addition-
ally, obtaining paired training data can be difficult and ex-
pensive. Hence, this method proposes an alternative to us-
ing paired training data by assuming an existence of some
underlying relationships between the domains - for exam-
ple, there are two different renderings of the same underly-
ing scene - and seek to learn that relationship. Additionally,
this proposed method also asserts a ”cycle consistency” be-
tween the translation from one image style to another and
back. This makes sure that there exists only a single trans-
lation and not infinitely many maps to the same output do-
main.

Recently, algorithms have been introduced for image
style transfer using generative models like Generative Ad-
versarial Networks [4] (GAN) and Variational Auto En-
coders [17] (VAE). GANs have been more popular due to
their better perceptual results on various datasets as com-
pared to algorithms based on likelihood maximization. The
method proposed by Jun-Yan [19] is a network of GANs
with additional cyclic consistency. The idea is that the op-
timal generator G will translate the image from domain X
to a domain Ŷ distributed identically to Y with an addi-
tional guarantee of recovering the original image X when
an inverse mapping function F is applied on the generated
image.

We implemented and applied the unpaired image to im-
age translation with cycle constancy loss on five different
datasets [1]: horse2zebra, apple2orange, summer2winter,
vangogh2photo and monet2photo (Figure 1 presents several
outputs from our implementation). We also performed de-
tailed analysis of the performance and presented some of
the unexpected as well as astounding results. Our code
is available at https://github.com/CycleGANS/
CS543CycleGANsProject and detailed blog and re-
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Figure 1. Our implementation of the CycleGAN algorithm introduced in paper [19] is able to perform unpaired image-to-image translation
successfully.

sults snaps are available at https://cyclegans.
github.io.

2. Details of Approach

In order to understand cycle GAN [19], it is important
that we understand GANs [4] (Generative Adversarial Net-
works) first. GANs were introduced by Ian Goodfellow et.
al. in their 2014 paper titled ”Generative Adversarial Nets”.

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are feedfor-
ward neural networks that create images from random noise
that approximate real images.This is done using two neural
networks: a generator and a discriminator.

Both, the generator and the discriminator, are multilayer
perceptrons. An architecture that uses both of them is re-
ferred to as Adversarial Nets. Both the models are trained
using backpropagation & dropout algorithms [18] and sam-
ples are obtained from the generator only using forward
propagation. Adversarial nets is most straightforward to ap-
ply when both models are multilayer perceptrons.

To formulate this, let the prior on input noise variables be
denoted by pz(z) and generator’s distribution over data be
pg . Let generator, the multilayer perceptron with parame-
ters θg , be the mapping function denoted by G(z; θg). Sim-
ilarly, second multilayer perceptron (discriminator) with pa-
rameters θd, that outputs a single scalar, be denoted by
D(x, θd). Also, the probability that x came from data rather
than pg be D(x). The task for the Generator network is to
approximate a function G(z; θg) that maps random noise
to a range whose probability distribution pg is the same as

the probability distribution of the real data x. While the dis-
criminator is tasked with differentiating bteween the images
coming out of the Generator and real data.

Training

• D is trained to maximize the probability of assigning
the correct label to both: training examples and sam-
ples from G

• Simultaneously, G is trained to Minimize log(1 −
D(G(z)))

Since, D(G(z)) is the discriminator’s probability of clas-
sifying the fake image G(z) as true image. We train D to
maximize the probability of assigning the correct label to
both training examples and samples from G. We simulta-
neously train G to minimize log(1 − D(G(z))). In other
words, D and G play the following two-player minimax
game with value function V (G,D):

min
G

max
D

V (D,G) =Ex∼pdata(x)[log(D(x))]

+ Ez∼pz(z)[log(1−D(G(z)))]

In practice, the implementation is carried out in an iter-
ative manner to avoid over-fitting and computational prohi-
bition of optimizing D to completion in the inner loop of
training. Instead, D and G are optimized alternately with k
optimization steps of D followed by one optimization step
of G. This allows D to be maintained near its optimal solu-
tion as long as G changes slowly.
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The theory of this paper states that as long as D and G
have enough capacity, pg converges to pdata i.e. the original
image space.

2.2. Cycle GANs

Cycle GANs was introduced by Jun-Yan Zhu et. al.
in their 2017 paper ”Unpaired Image-to-Image Transla-
tion using Cycle-Consistent Adversarial Networks” [19].
They also have an amazing website https://junyanz.
github.io/CycleGAN/ that provides examples of their
outputs, news articles and links to the implementation of
their algorithm in different programming languages.

The goal of this implementation is to learn mapping
functions between 2 domains X 7→ Y and vise versa. Con-
sidering the training examples from one domain {xi}Ni=1

where xi ∈ X distributed as x ∼ pdata(x) and simi-
larly, other domain {yi}Ni=1 where yj ∈ Y distributed as
y ∼ pdata(y). The two generators work as mapping func-
tions : G : X 7→ Y and F : Y 7→ X . The two discrimi-
nators DX & DY work as classifiers aiming to distinguish
between images {x} & {y} and translated images F (y) &
G(x) respectively.

2.2.1 Objective

The Objective of this architecture contains two kinds of
losses: One for matching the distribution of generated im-
ages to the data distribution in the target domain, called as
Adversarial Loss. The other is to prevent the learned map-
pings G and F from contradicting each other, called as Cy-
cle Consistency Loss.

Adversarial Losses:

Adversarial losses need to be applied to both mapping func-
tions. Where generator G tries to generate images that look
similar to images from domain Y and discriminator DY

aims to distinguish between translated samples G(x) and
real samples y. Hence, DY tries to maximize and G tries to
minimize the below loss.

LGAN (G,DY , X, Y ) =Ey∼pdata(y)[log(DY (y))]

+ Ex∼pdata(x)[log(1−DY (G(x)))]

Similarly, the second adversarial loss for mapping func-
tion F : Y 7→ X and it’s discriminator DX , the generator
F tries to minimize and discriminatorDX tries to maximize
the below loss.

LGAN (F,DX , X, Y ) =Ex∼pdata(x)[log(DX(x))]

+ Ey∼pdata(y)[log(1−DX(F (y)))]

Cycle Consistency Loss

In theory, adversarial training learns stochastic mapping
functions G and F that produce outputs that are identically
distributed as their target domains Y and X . However, with
large enough capacity, these functions can map the same set
of images to any random permutation of images in the tar-
get domain which have the same distribution as the target
distribution. This basically means that using only the ad-
versarial losses trains the generators to generate images that
look like images from the target set but may not have the
same structure as the input images.

Thus, forward cycle consistency and backward cycle
consistency are needed as given below respectively,

x 7→ G(x) 7→ F (G(x)) ≈ x

y 7→ F (y) 7→ G(F (y)) ≈ y

Incentivizing this behavior using cycle consistency loss

LCyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1]

+Ey∼pdata(y)[||G(F (y))− y||1]

This will result in full objective loss as given below,
which we aim to solve by minimizing over each genera-
tor i.e. G & F and maximizing over each discriminator i.e.
DX & DY .

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )

+LGAN (F,DX , Y,X)

+λLCyc(G,F )

where λ controls relative importance of the two objectives.
The pseudo code of the above algorithm is shown here 1

Algorithm 1 Cycle GANs
1: for number of epochs do
2: for number of batches do
3: Sample minibatch← {x(i)}mi=1 ∈ X
4: Sample minibatch← {y(j)}mj=1 ∈ Y
5: Generate m samples of G(x) and F (y)
6: Generate m samples of F (G(x)) and G(F (y))
7: X 7→ G(x)
8: Y 7→ F (y)
9: Update the Discriminators DX and DY

10: maxDX
LGAN (F,DX , X, Y )

11: maxDY
LGAN (G,DY , X, Y )

12: Update the Generators G and F
13: minG,F L(G,F,DX , DY )
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Figure 2. Overall CycleGAN Architecture of Our Implementation

2.3. Our Implementation

Now that we have understood the theory behind Cycle
GANs, it is time for us to look at the implementation. Based
on the theoretical analysis above, we implemented our Cy-
cleGAN architecture as shown in figure 2.

Basically, there are two generators and two discrimina-
tors. The input images from set X will be fed into a gen-
erator GX→Y that maps X to Y to generate fake image Y ,
which will then be passed to the discriminator DY to deter-
mine whether it’s fake or not. This fake image Y will also
go to the other generator FY→X that maps image from Y to
X to generate a cyclic image of X .

The input images from set Y follow similar procedures,
except that they will be passed through the generators in the
opposite order and a different discriminator.

2.3.1 Generator Network

In the implementation section of this paper, the authors
stated that the generator architecture used, was obtained
from the paper Justin Johnson et. al.[8]

Justin Johnson et. al. utilize perceptual losses to perform
style transforms between two sets of images. They also per-
form single image super resolution. They claim that their
implementation provides similar results when compared to

optimization models while being three orders in magnitude
faster.

They state that their architecture does not rely only on
pixel losses but also on perceptual losses which is the most
important, as small translations and rotations of the image
give large pixel losses which is not the case when consid-
ering perceptual losses. This results in absolutely stunning
outputs as shown in their paper.

However, we shall not get into the perceptual losses and
their benefits here as that is not our current priority. Our
motive to understand their architecture is limited to their
generator design which generates the amazing outputs and
also does this at a really fast pace.

The generator used in this implementation involves three
parts to it: in-network downsampling, several residual
blocks and in-network upsampling.

In-Network Downsampling

This part of the generator consists of two Convolution Net-
works [9], each followed by Spatial Batch Normalization
and a ReLu activation function [18].

Each convolution network uses a stride of 2 so that
downsampling can occur. The first layer has a kernel size
of 9x9 while the second layer has a kernel size of 3x3.
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Residual Blocks

The concept of residual blocks was introduced by Kaiming
He et. al.[6]. Each residual block consists of two convo-
lution layers. The first convolution layer is followed by
batch normalization and ReLu activation. The output is
then passed through a second convolution layer followed by
batch normalization. The output obtained from this is then
added to the original input. The architecture of the residual
block is shown in Figure 3.

Each convolution layer in every residual block has a 3x3
filter. The number of residual blocks depend on the size
of the input image. For 128x128 images, 6 residual blocks
are used and for 256x256 and higher dimensional images, 9
residual blocks are used.

In-network Upsampling

This part consists of two convolution layers. They are
fractionally strided with a stride value of 1

2 . The first
convolution layer has a kernel size of 3x3 while the last
layer has a kernel size of 9x9. The first layer is followed by
batch normalization and ReLU activation while the second
convolution layer is followed by a scaled Tanh function [2]
so that the values can fall between [0,255] as this layer is
the output layer.

The entire feedforward generator network starts off with
downsampling, followed by residual blocks and ends with
upsampling. See figure 4.

Residual
Blocks

Downsampling / 
Convolution / 
Encoding 

Upsampling / 
DeConvolution / 

Decoding 

Figure 4. Generator Network

The benefits of using such a network is that it is computa-
tionally less expensive compared to the naive implementa-
tion and provides large effective receptive fields that lead to
high quality style transfers in the output images.

For our implementation, we used least squared losses as
the adversarial loss instead of cross entropy as suggested by
Mao, Xudong, et al.[14] since cross entropy leads to vanish-
ing gradient issues. We also replaced the first convolution
layer having 9x9 filter size by two convolution layers hav-
ing 7x7 and 3x3 sized filters respectively as this provides
the same receptive field size with smaller number of param-
eters. We did the same with the output layer but with 3x3
followed by 7x7 filter sized convolution layers. Also, [13]
was used to get the outputs within the 0-255 range.

The exact details of the layers in the Generator of our
implementation is shown in Table 1 below:

Table 1. Generator Layers
Layer
Number

Layer
Type

Kernel
Size Stride

Input—Output
Dimension

Input—Output
Channels

1 Conv2d 7 1 256—256 3—64
2 BatchNorm2d - - 256—256 64—64
3 ReLU - - 256—256 64—64
4 Conv2d 3 2 256—128 64—128
5 BatchNorm2d - - 128—128 128—128
6 ReLU - - 128—128 128—128
7 Conv2d 3 2 128—64 128—256
8 BatchNorm2d - - 64—64 256—256
9 ReLU - - 64—64 256—256
10 Conv2d 3 1 64—64 256—256
11 BatchNorm2d - - 64—64 256—256
12 ReLU - - 64—64 256—256
13 Convd2d 3 1 64—64 256—256
14 BatchNorm2d - - 64—64 256—256
15 9+14 - - 64—64 256—256
16 Conv2d 3 1/2 64—128 256—128
17 BatchNorm2d - - 128—128 128—128
18 ReLU - - 128—128 128—128
19 Conv2d 3 1/2 128—256 128—64
20 BatchNorm2d - - 256—256 64—64
21 ReLU - - 256—256 64—64
22 Conv2d 7 1 256—256 64—3
23 TanH - - 256—256 3—3

Note: Layers 9 to 15 represent a residual block and are
repeated 9 times.

2.3.2 Discriminator Network

The CycleGAN paper uses the architecture of 70×70 Patch-
GANs introduced by the paper of Isola, Phillip, et al. in
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2017 [7]. This architecture is also applied in [10] and [12].
The main difference between a PatchGAN and a regular

GAN discriminator is that the latter maps an input image
to a single scalar output in the range of [0, 1], indicating the
probability of the image being real or fake, while PatchGAN
provides an array as the output with each entry signifying
whether its corresponding patch is real or fake.

According to [7], using a PatchGAN is sufficient because
the problem of blurry images caused by failures at high fre-
quencies like edges and details can be alleviated by restrict-
ing the GAN discriminator to only model high frequencies,
which is what PatchGAN is designed for.

The reason why the CycleGAN paper implements Patch-
GAN as its discriminator is that it has fewer parameters than
a full-image discriminator, and thus runs faster, being able
to work on arbitrarily large images. The experimental re-
sults also show that it can produce high quality results even
with a relatively small patch size.

Due to the limitation of computing resources, we imple-
mented a slightly simpler discriminator network consider-
ing the suggestions of [11] and [5] based on the original
network in the paper.

The main difference is that instead of using PatchGAN,
we applied a general discriminator structure. The other
parts of the architecture are similar to the original one. Fig-
ure 5 shows our basic idea. Besides the convolution layers
in the figure, our discriminator model also supports batch
normalization and leaky ReLU layers in between by mak-
ing them optional when needed.

Batch Normalization
Leaky ReLU

Input

Conv Layer 1

Conv Layer 2

Conv Layer 3

Conv Layer 4

Conv Layer 5

Output

Decision [0, 1]

Discriminator

Leaky ReLU

Batch Normalization

Batch Normalization

Leaky ReLU

Leaky ReLU

Figure 5. Discriminator Network

Table 2. Discriminator Layers
Layer
Number

Layer
Type

Kernel
Size Stride

Input—Output
Dimension

Input—Output
Channels

1 Conv2d 4 2 256—128 3—64
2 LReLU - - 256—128 3—64
3 Conv2d 4 2 128—64 64—128
4 BatchNorm2d - - 128—64 64—128
5 LReLU - - 128—64 64—128
6 Conv2d 4 2 64—32 128—256
7 BatchNorm2d - - 64—32 128—256
8 LReLU - - 64—32 128—256
9 Conv2d 4 1 32—31 256—512
10 BatchNorm2d - - 32—31 256—512
11 LReLU - - 32—31 256—512
12 Conv2d 4 1 31—30 512—1

The detailed information of the layers that we use in our
final model are in table 2. We decide to use leaky ReLU to
allow a small gradient α when the unit is not active, i.e.,

f(x) = αx for x < 0

The value of α is 0.2 in our case.
Note that the output image of the last layer has a size of

30 × 30 × 1, with the value of each pixel representing for
the possibility of how likely the corresponding section of
the input image is real.

From our tests and results, the architecture is further sim-
plified. However, it is still able to produce descent results
(see the following sections for details).

3. Results

The table below displays our implementation choices for
running Cycle GANs:

Table 3. Hyperparameters
Name Epochs Batch size Cyclic loss rate λ Learning rate
Value 200 1 10 0.002

The number of epochs were reduced for monet2photo
and vangogh2photo.

Table 4. Dataset Details
Data set Space Train Size (A) Train Size (B) Test Size (A) Test Size (B)

horse2zebra 111M 1067 1334 120 140
apple2orange 75M 995 1019 266 248

summer2winter 126M 1231 962 309 238
vangogh2photo 292M 400 6287 400 751
monet2photo 291M 1072 6287 121 751

3.1. Selected Generated Images

We will present some of our best results for datasets
horse2zebra, winter2summer and monet2photo here. The
entire results of all the datasets that we have tested can be
found in the Appendix, and the corresponding discussion
and analysis can be found in the following sections.
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Figure 6. Horse to Zebra

Figure 7. Zebra to horse

Figure 8. Summer to Winter

Figure 9. Winter to Summer

Figure 10. Monet to Photo

Figure 11. Photo to Monet

3.2. Quantitative Analysis

To monitor the analytics, we have used Tensorboard (3.2)
from Tensorflow, Google [15]. Trends in total generator loss
and the variation in the two discriminator losses are those
attributes that measure model performance.

Figure 12. Total Generator loss profile for datasets : horse2zebra,
apple2orange and summer2winter - 200 epochs

Figure 12 shows the generator total loss profile across all
datasets. The trend is apparent that the loss is reduces till a
certain point and then saturates for rest of the iterations. The
saturated values in Figure 12 for the respective datasets are
directly proportional to their apparent output image quality.

Figure 13. Discriminator (X) loss profile for datasets :
horse2zebra, apple2orange and summer2winter - 200 epochs

Figure 14. Discriminator (Y) loss profile for datasets :
horse2zebra, apple2orange and summer2winter - 200 epochs
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The discriminator profiles shown in Figure 13 and Fig-
ure 14 are denoised by a smoothing factor of 0.65. The
profile suggests that the variance is decreasing as iterations
increase. However, the mean value gets saturated around
0.2 instead of 0.5. Hence, we draw the conclusion that the
discriminators accept fake images as true images 20% of the
time.

Due to early saturation of the discriminator variance and
generator loss, we have tuned down total epochs to 75 for
next two datasets: monet2photo and vangogh2photo

Figure 15. Total Generator loss profile for datasets : monet2photo
and vangogh2photo - 75 epochs

Similar trend as Figure 12 is observed in Figure 15. The
total generator loss is exponentially decreasing with respect
to iterations. However, the loss in Figure 12 is lower than in
Figure 15, might be due to the initialization effect.

Figure 16. Discriminator (X) loss profile for datasets :
monet2photo and vangogh2photo - 75 epochs

Figure 17. Discriminator (Y) loss profile for datasets :
monet2photo and vangogh2photo - 75 epochs

There exists a high variance in painting to photo transla-
tion as seen in Figure 16 when compared to photo to paint-
ing translation shown in Figure 17. This can be explained
intuitively as it is easier to learn the conversion from photo

to painting but its much more troublesome to do the other
way round. This is also apparent in the observed outcome
of the painting to photo translation for both monet2photo
and vangogh2photo datasets.

3.3. Testing Analysis

The summarized result for all of the datasets, namely,
horse2zebra, apple2orange, winter2summer, monet2photo,
vangogh2photo, are compiled in the APPENDIX section
with good results and bad results as two main categories.

horse2zebra

We have a successful implementation of the horse2zebra
dataset with rare failure cases. We were able to replicate the
results presented by Jun-Yan [19]. Through observation, the
failure cases are more for zebra to horse than horse to zebra
translation. This dataset is also prone to initialization trap
but fortunately we have managed to re-initialize the network
graph to avoid such failure cases. See the good results for
converting horse to zebra and zebra to horse in Figure 18
and Figure 19. The bad results are shown in Figure 28.

apple2orange

The outputs for this dataset are not as desired for both con-
verting apples to oranges (Figure 22) and oranges to apples
(Figure 23) compared to the horse2zebra dataset. The bad
results look even worse (Figure 30).

The reason is that this dataset suffers form a bad ini-
tialization trap. The initialization trap is when the weights
of the generative network initialized in such a way that it
produces the negatives of the complementary colors to the
target colors. For example, the background of the apples
to orange and orange to apple translation comes out to be
negatives of the original. The same happened with the
horse2zebra dataset. The re-initialization of the network
graph is one way to avoid this trap. Unfortunately, due to re-
stricted walltime in ’Blue Waters’, several re-initializations
are infeasible. Hence, we have presented the results with
bad initialization and only categorize the images based on
target object itself. But for horse2zebra dataset, we have
tried multiple re-initializations and thus obtained descent
results.

winter2summer

This dataset produced the most astonishing results for both
way translations (see Figure 21 for winter to summer and
Figure 20 for summer to winter). The network is able to not
only translate but also maintain or sometimes enhance the
overall perceptual quality of the image. Most of the good
translations occur when input images have compositions of
variety of elements like trees, leaves, mountains/rocks and
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snow/sand in the landscape. We have rare failure cases
when there is a portrait style image present, high percent-
age of single entity present (ex : snow, sand or mountain)
and presence of specular reflection. This failure could ad-
ditionally cause acyclic behavior as well in the translation.
Details can be found in Figure 29.

monet2photo

In general, it is difficult to convert a painting to photo as
compared to photo to painting. Similar difficulty is ob-
served in the training for this dataset. Although, there ex-
ists a non-decreasing variance, the testing results have better
quality than expected. Most of the images are successfully
translated to the target domain.

Details can be found in Figure 24 for converting monet
to photo and Figure 25 for photo to monet. Results that are
relatively not that good are shown in Figure 31.

vangogh2photo

Like apple2orange dataset, this dataset also suffers from the
initialization trap. Additionally, due to the presence of com-
paratively less number of images to train (i.e. 400 training
images) it is a challenging task to alter the hyperparameters
to adjust the network again to avoid the trap. Due to re-
stricted walltime we could only attempt the re-initialization
twice but unfortunately could not avoid the initialization
trap. Details can be found in Figure 26 for vangogh to photo
and Figure 27 for photo to vangogh. Some bad results that
reflect the problem of bad initialization can be found in Fig-
ure 32.

4. Discussions
Our implementations seem to provide good results

overall. The results obtained from horse2zebra, sum-
mer2winter yosemite and monet2photo show a lot of
promise. However, there are certain cases in which our im-
plementation fails. In the apples2oranges dataset, several of
the output images have an effect of negative photographs.
This is probably due to bad initialization as similar results
were coming up in the horse2zebra implementation. But
since we ran horse2zebra on Google Cloud, it was easier
for us to re-run the network as soon as we figured out the
issue, which solved the problem. The apples2oranges was
implemented on Bluewaters. Despite, rerunning it 3 times,
we still could not find a good initialization. Similar effects
are seen in vangogh2photo outputs.

Since, we tested our network on test images for ev-
ery 400th iteration, we found that the horse2zebra worked
best between 75-80 epochs. This motivated us to use
fewer epochs in our implementation for monet2photo and
vangogh2photo. Another issue that we noticed in the

horse2zebra outputs is that different number of epochs pro-
vide best results for different colored horses. This is a typi-
cal evidence against the ”One size fits all” concept.

Observing the generator loss from the figure above, it
is evident that the summer2winter and horse2zebra datasets
are among the curves that come close to low losses. This
means that the apparent results are better for these dataset as
compared to others. Hence, we have observed the pleasing
results for horse2zebra and summer2winter as compared to
other datasets.

As seen in the graphs for the generator and discrimina-
tor losses, the generator losses reduce with the number of
iterations, and the discriminator losses stagnate around 0.2.
The generator losses are as desired but a good loss graph
for the discriminator would hover around 0.5 as discussed
in GANs. The possible reason for the bad discriminator
loss could be that our discriminator is not too sophisticated.
Further improvements in the discriminator such as an im-
plementation of PatchGAN could provide us with better re-
sults.

5. Conclusion
Our work in this project involved learning and summa-

rizing the theoretical details of CNN, GANs, CyCleGANs
along with the architectures of it’s generator and discrim-
inator networks, implementing the entire CycleGANs al-
gorithm from scratch on TensorFlow, training the model
with different training sets and hyperparameters, testing the
trained model with multiple test sets, performing quantita-
tive analysis on the loss trends, and presenting detailed dis-
cussions on both our positive and negative results.

Experimental results show that our CycleGAN model
performs well in the task of two-way unpaired image-to-
image translation, such as transforming horses to zebras and
zebras to horses. Most of the outputs are quite reasonable.

Based on our work and results, we believe that we have
achieved the desired goal that motivated us to take up this
project. Specifically, we stated in our proposal that our
minimal goal was to implement the method proposed in
the paper and test it on test images such as horse2zebra
and apple2orange and self provided images. We have ac-
tually achieved more than that. Besides the two datasets
mentioned above, we have also tested our model on win-
ter2summer, monet2photo and vangogh2photo datasets.

It is worth mentioning that this project also provided us
the opportunity to understand the implementation of neural
networks on cloud platforms such as Google Cloud. There
are still some limitations of this project. Although we have
achieved a lot more than our minimum goal, we did not
have enough time to make our model work on videos, which
was our maximum goal. Another problem is that some of
our datasets suffer from the bad initialization trap and we
weren’t able to find the good ones.
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Future work may contain solving the above two prob-
lems and exploring more about CycleGANs by further test-
ing on different configurations, such as modifying the struc-
tures of the generator and discriminator.

6. Statement of individual contribution
Harshad Rai

Harshad was responsible for implementing the generator
network. He also implemented the training algorithm with
Ziyu and Naman contributing with their respective work.
While training the network, he was also responsible for set-
ting up Google cloud due to insufficient walltime for large
training data in Blue Waters.

Naman Shukla

Naman was incharge of the website for collaboration and
dataset management. He also wrote the scripts for training
and testing with dataset in place along with Harshad and
Ziyu’s implementations. Blue waters setup and runtime vi-
sual analysis is also done by Naman with continuous sup-
port from the other two team members.

Ziyu Zhou

Ziyu implemented the discriminator network for the cycle
GAN module. She was also responsible for writing the test-
ing module for the network. Along with Harshad and Na-
man, she worked on visualizations of the results and dataset
analysis of all results.
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Appendix
In this section we present the collage of images for all the

datasets. This collection is arranged in a sequential manner
into two major category : good images and bad images.
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Figure 18. Good Results for Converting Horse to Zebra
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Figure 19. Good Results for Converting Zebra to horse
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Figure 20. Good Results for Converting Summer to Winter
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Figure 21. Good Results for Converting Winter to Summer
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Figure 22. Good Results for Converting Apple to Orange
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Figure 23. Good Results for Converting Orange to Apple
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Figure 24. Good Results for Converting Monet to Photo
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Figure 25. Good Results for Converting Photo to Monet
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Figure 26. Good Results for Converting Vangogh to Photo
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Figure 27. Good Results for Converting Photo to Vangogh
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Figure 28. Bad Results for Converting Horse to Zebra and Zebra to Horse
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Figure 29. Bad Results for Converting Summer to Winter and Winter to Summer

22



Figure 30. Bad Results for Converting Apple to Orange and Orange to Apple
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Figure 31. Bad Results for Converting Monet to Photo and Photo to Monet
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Figure 32. Bad Results for Converting Vangogh to Photo and Photo to Vangogh
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